Trade Effects on Mortality: Evidence from China Shocks in Brazil

Luca Moreno-Louzada Rodrigo Megale Naercio Menezes-Filho

Insper and University of São Paulo

December 15, 2023

45th Meeting of the Brazilian Econometric Society - Rio de Janeiro, Brazil

Introduction and Motivation

- International trade can affect health and mortality in many ways expanded access to foreign goods and knowledge, labor market effects, household income (Blouin et al., 2009)
- Causal identification is a challenge
- Many cross-country studies, or studies focusing on specific causes of deaths (e.g. pollution, despair) or infant mortality
- Evidence for overall mortality is lacking, especially in developing countries

- We use the China Shock for causal identification harmful for manufacturing industries (Autor et al., 2013)
- In Brazil, there were positive effects from demand shocks and productivity gains (Costa et al., 2016; Alfaro et al., 2022)
- Using a shift-share instrumental variable approach, we investigate whether the effects on mortality were also different

China Shock and Mortality

- In the US: increase in despair deaths (Pierce and Schott, 2020) and work related injuries (Adda and Fawaz, 2020)
- In Mexico: increase in crime (Dell et al., 2019), and obesity / diabetes mortality (Fernández Guerrico, 2021)
- What about Brazil? (spoiler: **decreases** in mortality, **both** from imports and exports)

Literature contributions

- Trade and mortality (Pierce and Schott, 2020; Autor et al., 2019; Fernández Guerrico, 2021; Charris et al., 2023)
- Economic shocks and mortality (Browning and Heinesen, 2012; Classen and Dunn, 2012; Ruhm, 2000; Hone et al., 2019)
- Trade and crime (Dell et al., 2019; Dix-Carneiro et al., 2018)
- China Shock (Autor et al., 2013; Autor, 2018; Costa et al., 2016; Connolly, 2022)

- Demographic Censuses (2000 and 2010)
- Trade data: UN Comtrade and CEPII BACI
- Mortality: SIM DATASUS (age adjusted mortality rates)

Empirical strategy

We build shift-share instruments (analogous for import supply IS_m and export demand XD_m) following Autor et al. (2013):

$$IS_m = \sum_j s_{jm} x_{j,IS}$$

where
$$s_{jm} = \frac{L_{mj,2000}}{L_{m,2000}}$$
 and $x_{j,IS} = \frac{\Delta I_j}{L_{Bj,2000}}$

and the instruments

$$ivIS_m = \sum_j s_{jm} g_{j,IS} = \sum_j \frac{L_{mj,2000}}{L_{m,2000}} \frac{\Delta X_{China,j}}{L_{Bj,2000}}$$

Empirical strategy: estimation

Then we run the following regression:

$$\underbrace{\Delta \ln Y_m}_{\text{Outcome}} = \underbrace{\beta IS_m}_{\text{Import Shocks}} + \underbrace{\theta XD_m}_{\text{Export Shocks}} + \underbrace{\lambda X'_m}_{\text{Controls for Economic Structure}} + \underbrace{\alpha_s}_{\text{State Fixed-Effects}} + \varepsilon_m$$

- Regressions are weighted by relative workforce size, and errors are clustered by microrregion
- We conduct tests for the identification assumptions discussed by the recent econometric literature (Borusyak et al., 2022; de Chaisemartin and Lei, 2023) Here

Dynamic effects on mortality

Dynamic effects on homicides

Results: Mortality by cause

	Cancer	Cardiovascular	Blood and Endocrine	Nutritional	Infectious	Respiratory
XD _m	-0.151	-0.158	-0.154	-0.036	-0.080	-0.225*
	(0.202)	(0.402)	(0.122)	(0.051)	(0.163)	(0.116)
ISm	-0.146	-0.111	-1.325	0.174	-0.218	0.260
	(1.329)	(2.874)	(1.102)	(0.272)	(1.978)	(0.937)
	Transport accidents	Violence	Drug overdose	Self-harm	Other	Indeterminate
XD _m	-0.156	-0.027	-0.103	-0.0001	-0.142	-0.428
	(0.099)	(0.151)	(0.075)	(0.057)	(0.182)	(0.404)
ISm	-0.649	-6.983***	0.059	-0.123	-0.487	-9.690*
	(0.912)	(1.917)	(0.383)	(0.273)	(1.963)	(5.716)
N	4,267	4,267	4,267	4,267	4,267	4,267

Note: *p<0.1; **p<0.05; **p<0.01

Robustness

- Alternative estimator based on Costa et al. (2016) Here
- Sector-level equivalent regressions (Borusyak et al., 2022) Here
- Alternative standard errors (Adão et al., 2019) Here
- Socioeconomic controls Here
- Inclusion of instrumented pre-trends Here

What do these numbers mean?

- For each USD 1,000 increase in exports from Brazil to China, the age adjusted mortality rate was reduced by 1.7 deaths per 100k (5.3 deaths for 1 std). Mean mortality rates: 563 in 2000 and 491 in 2010
- For imports: reduction of 2.2 homicides per 100k people for an increase of one standard deviation in imports

Mechanisms: Labor market outcomes

	Poverty 2SLS	Log income 2SLS	Unemployment 2SLS	Informality 2SLS	Employment 2SLS	Log wages 2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
XD _m	-0.013** (0.007)	0.006*** (0.002)	0.0002 (0.0002)	$egin{array}{c} -0.001^{***} \ (0.001) \end{array}$	-0.00002 (0.0003)	0.003 (0.002)
IS _m	-0.138*** (0.044)	-0.001(0.008)	-0.012*** (0.002)	-0.010^{**} (0.005)	0.003 (0.002)	0.020* (0.011)
N	4,267	4,267	4,267	4,267	4,267	4,267

Note: *p<0.1; **p<0.05; **p<0.01

Mechanisms: Labor market outcomes

	Poverty 2SLS	Log income 2SLS	Unemployment 2SLS	Informality 2SLS	Employment 2SLS	Log wages 2SLS
	(1)	(2)	(3)	(4)	(5)	(6)
XD _m	-0.013** (0.007)	0.006*** (0.002)	0.0002 (0.0002)	-0.001^{***} (0.001)	-0.00002 (0.0003)	0.003 (0.002)
IS _m	-0.138*** (0.044)	-0.001 (0.008)	-0.012*** (0.002)	-0.010** (0.005)	0.003 (0.002)	0.020* (0.011)
N	4,267	4,267	4,267	4,267	4,267	4,267

Note: *p<0.1; **p<0.05; **p<0.01

Results: Sectors

	Manuacturing	Primary	Non-Traded
Panel A: Sector shares			
XD _m	-0.0001	0.001**	-0.001^{***}
	(0.0004)	(0.0005)	(0.0004)
ISm	-0.009	0.007**	-0.006
	(0.006)	(0.003)	(0.007)
Panel B: Log wages			
XD _m	0.001	-0.007^{*}	0.003*
	(0.003)	(0.004)	(0.002)
ISm	-0.023	0.038	0.028***
	(0.017)	(0.051)	(0.010)
N	4,267	4,267	4,267

Note: *p<0.1; **p<0.05; **p<0.01

Workforce distribution by education (in 2000)

	Sector			
Group	Manufacturing	Non-traded	Primary	
No School	0.17	0.17	0.47	
Elementary	0.45	0.38	0.45	
High-school	0.30	0.30	0.06	
College	0.08	0.15	0.01	

Workforce distribution by education (in 2000)

		Sector	
Group	Manufacturing	Non-traded	Primary
No School	0.17	0.17	0.47
Elementary	0.45	0.38	0.45
High-school	0.30	0.30	0.06
College	0.08	0.15	0.01

Mechanisms: Labor market outcomes by education

	No School	Elementary	High-school	College
Panel A: Log income				
XD _m	0.010***	0.006***	0.004**	0.005
	(0.003)	(0.002)	(0.002)	(0.003)
ISm	0.048***	-0.018^{*}	0.006	0.008
	(0.016)	(0.010)	(0.009)	(0.016)
N	4,267	4,267	4,267	4,149
Panel B: Employment				
XD _m	0.001	-0.001	-0.001^{**}	0.001
	(0.001)	(0.0004)	(0.0003)	(0.001)
IS _m	0.033***	0.005	-0.006^{*}	-0.014***
	(0.004)	(0.003)	(0.003)	(0.004)
N	4,267	4,267	4,267	4,244

Note: *p<0.1; **p<0.05; **p<0.01

In sum: mechanisms work through different channels

Conclusion

- Both import competition and export demand shocks **decreased mortality** in Brazil, but **mechanisms were different**
- While exports affected income, increasing overall health, imports affected employment, increasing the opportunity cost of crime and reducing homicides
- Next: more insights on mechanisms; focus on infant mortality

Thank you lucamlouzada@gmail.com

References I

- Adão, R., Kolesár, M., and Morales, E. (2019). Shift-share designs: Theory and inference. *The Quarterly Journal of Economics*, 134(4):1949–2010.
- Adda, J. and Fawaz, Y. (2020). The health toll of import competition. *The Economic Journal*, 130(630):1501–1540.
- Alfaro, L., Chen, M., Lucchesi, A., Menezes-Filho, N., and Schnitzer, M. (2022). The Pains and Gains of Imports: Competition, Import Sourcing and Firm Adaptation. Working Paper.
- Autor, D. (2018). Trade and labor markets: Lessons from China's rise. IZA World of Labor, 431:1-12.
- Autor, D., Dorn, D., and Hanson, G. (2013). The China syndrome: Local labor market effects of import competition in the United States. *American Economic Review*, 103(6):2121–68.
- Autor, D., Dorn, D., and Hanson, G. (2019). When work disappears: Manufacturing decline and the falling marriage market value of young men. *American Economic Review: Insights*, 1(2):161–78.
- Blouin, C., Chopra, M., and Van der Hoeven, R. (2009). Trade and social determinants of health. *The Lancet*, 373(9662):502–507.
- Borusyak, K., Hull, P., and Jaravel, X. (2022). Quasi-experimental shift-share research designs. *The Review of Economic Studies*, 89(1):181–213.
- Browning, M. and Heinesen, E. (2012). Effect of job loss due to plant closure on mortality and hospitalization. *Journal of Health Economics*, 31(4):599–616.
- Charris, C., Branco, D., and Carrillo, B. (2023). Economic shocks and infant health: Evidence from a trade reform in brazil. *Journal of Development Economics*.

References II

- Classen, T. J. and Dunn, R. A. (2012). The effect of job loss and unemployment duration on suicide risk in the United States: A new look using mass-layoffs and unemployment duration. *Health Economics*, 21(3):338–350.
- Connolly, L. (2022). The effects of a trade shock on gender-specific labor market outcomes in brazil. *Labour Economics*, 74:102085.
- Costa, F., Garred, J., and Pessoa, J. P. (2016). Winners and losers from a commodities-for-manufactures trade boom. *Journal of International Economics*, 102:50–69.
- de Chaisemartin, C. and Lei, Z. (2023). More Robust Estimators for Instrumental-Variable Panel Designs, With An Application to the Effect of Imports from China on US Employment. SSRN Working Paper 3802200.
- Dell, M., Feigenberg, B., and Teshima, K. (2019). The violent consequences of trade-induced worker displacement in Mexico. *American Economic Review: Insights*, 1(1):43–58.
- Dix-Carneiro, R., Soares, R. R., and Ulyssea, G. (2018). Economic shocks and crime: Evidence from the Brazilian trade liberalization. *American Economic Journal: Applied Economics*, 10(4):158–195.
- Fernández Guerrico, S. (2021). The effects of trade-induced worker displacement on health and mortality in Mexico. *Journal of Health Economics*, 80:102538.
- Hone, T., Mirelman, A. J., Rasella, D., Paes-Sousa, R., Barreto, M. L., Rocha, R., and Millett, C. (2019). Effect of economic recession and impact of health and social protection expenditures on adult mortality: a longitudinal analysis of 5565 Brazilian municipalities. *The Lancet Global Health*, 7(11):e1575–e1583.
- Pierce, J. R. and Schott, P. K. (2020). Trade liberalization and mortality: evidence from US counties. *American Economic Review: Insights*, 2(1):47–64.
- Ruhm, C. J. (2000). Are recessions good for your health? The Quarterly Journal of Economics, 115(2):617-650.

Identification

- The exogenous shocks framework supports identification in our setting (Borusyak et al., 2022)

$$\mathbb{E}\left[\sum_{m} e_{m} i v X D_{m} \varepsilon_{m}\right] = \mathbb{E}\left[\sum_{m} e_{m} \sum_{j} s_{jm} g_{j,XD} \varepsilon_{m}\right] = \mathbb{E}\left[\sum_{j} s_{j} g_{j,XD} \overline{\varepsilon}_{j}\right] = 0$$

- But there are concerns: sectoral composition between regions leads to correlation of residuals (Adão et al., 2019)
- We also need many random and independent shocks, but this assumption can be (suggestively) tested (de Chaisemartin and Lei, 2023) Here

Random Shocks Test

	I	mports (<i>g_{j,IS}</i>)		Exports $(g_{j,XD})$		
	(1)	(2)	(3)	(4)	(5)	(6)
Sector share	-104.272 (77.069)	-46.097 (51.891)	—45.365 (51.124)	—252.553 (153.366)	25.615 (128.762)	20.642 (128.297)
College (%)		37.348 (66.671)	35.820 (66.441)		-53.471 (67.958)	-49.442 (68.797)
Black (%)		7.585 (8.100)	10.092 (8.589)		87.728 (78.243)	88.546 (78.921)
Log wage		2.784 (5.901)	3.747 (5.775)		33.688 (24.781)	33.988 (25.042)
Male (%)		-26.582* (15.924)	—25.882 (15.986)		24.512 (18.987)	21.644 (19.124)
Control for other instrument	No	No	Yes	No	No	Yes
F-stat P-value	82 0.18	0.28	62 0.39	62 0.11	82 0.37	82 0.49

Results: All-cause mortality

	OLS	2SLS
	(1)	(2)
XD _m	-1.428	-1.661
	(0.628)**	(0.672)**
	. ,	0.352
ISm	-15.989	-19.239
	(5.127)***	$(5.816)^{***}$
		[5.454] ^{***}
Kleibergen-Paap F-Stat.		90.087***
N (Regions)	4,267	4,267
N (Sectors)	82	82

Note: *p<0.1; **p<0.05; **p<0.01

Robsutness: Alternative Instrument

	Main Costa et al (2016)		Costa et al (2016) - Municipality
	(1)	(2)	(3)
XD _m	-1.661** (0.672)	-5.764* (3.272)	-6.749*** (1.807)
IS _m	-19.239^{***} (5.816)	-16.344** (6.855)	-14.733^{**} (6.364)
N	4,267	554	4,267

Robustness: Alternative SE

	$\hat{\beta}_{2SLS}$	Microregion	Mesoregion	Shock-level HC	Shock-level clustered	AKM C.I.
	(1)	(2)	(3)	(+)	(3)	(0)
XD_m	-2.186	(0.721)	(0.618)	(0.823)	(0.829)	[-3.480, -0.892]
IS _m	-19.684	(5.780)	(6.470)	(4.046)	(4.600)	[-26.022, -13.347]
N (Regions)		4,267	4,267	4,267	4,267	4,267
N (Sectors)		82	82	82	82	82
N (Clusters)		554	137	—	48	48

Back

Robustness: Alternative specifications

	Main	Pre-trend	Controls	Log	Alternative instrument
	(1)	(2)	(3)	(4)	(5)
XD _m	-1.661 (0.672)** [0.352]***	-1.984 (0.770)*** [0.608]***	-1.540 (0.649)** [0.327]***	-0.005 $(0.002)^{***}$ $[0.001]^{***}$	-1.432 (0.644)** [0.119]***
IS _m	-19.239 (5.816)*** [5.454]***	-22.864 (6.795)*** [5.833]***	-16.854 (5.720)*** [5.921]***	-0.034 (0.012)*** [0.016]**	-21.182 (7.757)*** [7.710]***
N (Regions) N (Sectors)	4,267 82	4,267 82	4,267 82	4,267 82	4,267 82

Robustness: Socioeconomic controls

